API Documentation
Documentation for ExperimentalDesign.jl's API.
Contents
Index
ExperimentalDesign.AbstractRandomDesignExperimentalDesign.AbstractResponseSurfaceDesignExperimentalDesign.IterableFullFactorialExperimentalDesign.RandomDesignExperimentalDesign.a_criterionExperimentalDesign.e_criterionExperimentalDesign.g_criterionExperimentalDesign.rd_criterionExperimentalDesign.t_criterion
API
ExperimentalDesign.AbstractRandomDesign — Typeabstract type AbstractRandomDesign <: AbstractDesignExperimentalDesign.AbstractResponseSurfaceDesign — Typeabstract type AbstractResponseSurfaceDesign <: AbstractDesignExperimentalDesign.IterableFullFactorial — Typestruct IterableFullFactorial <: AbstractFactorialDesignmatrix::DataFramefactors::NamedTupleformula::FormulaTerm
ExperimentalDesign.RandomDesign — Typestruct RandomDesign <: ExperimentalDesign.AbstractRandomDesignmatrix::DataFramefactors::NamedTupleformula::FormulaTerm
ExperimentalDesign.a_criterion — Methoda_criterion(model_matrix; tolerance) -> Any
Criterion of A-optimality which seeks minimum of $trace((X^T · X)^{-1})$. This criterion results in minimizing the average variance of the estimates of the regression coefficients.
Criterion metric is $\frac{p}{trace((X^T · X)^{-1}) · N}$.
ExperimentalDesign.e_criterion — Methode_criterion(model_matrix; tolerance) -> Any
Criterion of E-optimality maximizes the minimum eigenvalue of the information matrix ($X^T · X$).
Minimization metric is $\frac{\min λ(X^T · X)}{N}$
ExperimentalDesign.g_criterion — Methodg_criterion(model_matrix; tolerance) -> Any
Criterion of G-optimality which seeks minimize the maximum entry in the diagonal of $X·(X^T · X)^{-1}·X^T$. This criterion results in minimizing the maximum variance of the predicted values.
Minimization metric is $\frac{N}{\max diag(H)}$ where $H = X·(X^T · X)^{-1}·X^T$.
ExperimentalDesign.rd_criterion — Methodrd_criterion(model_matrix; tolerance) -> Any
Criterion of rotation distance optimality. Experimental.
ExperimentalDesign.t_criterion — Methodt_criterion(model_matrix; tolerance) -> Any
Criterion of T-optimality. This criterion maximize $trace(X^T · X)$.
Minimization metric is $\frac{trace(X^T · X)}{N · p}$.